Популярные контактные технологии термометрии

№ 1’2006
Измерение температуры — один из наиболее распространенных видов измерений в нашей жизни. Каждое утро мы смотрим на термометр за окном, не задумываясь, как он работает, а заболев, пользуемся медицинским термометром.

Измерение температуры — один из наиболее распространенных видов измерений в нашей жизни. Каждое утро мы смотрим на термометр за окном, не задумываясь, как он работает, а заболев, пользуемся медицинским термометром.

Наиболее просто измерения температуры реализуются в области умеренных температур в газообразных и жидких средах при стационарных температурах. Измерение температуры поверхности объектов существенно сложнее, чаще не столько в смысле практической реализации, сколько в плане получения достоверных результатов. Непросто измерить и быстро меняющуюся температуру. Сложными являются измерения в области либо крайне низких, либо сверхвысоких температур, и измерения температуры с высокой точностью.

К сожалению, одним из результатов проводимых реформ явилось нарушение преемственности между поколениями разработчиков. Нередко в Интернет-форумах можно встретить такой «простой» вопрос: «Как измерить температуру с точностью 0,1 °С?», — и не менее наивный ответ: «Возьмите датчик TMP100, у него разрешающая способность 0,0625 °С». При этом отождествляются понятия разрешающей способности АЦП и точности измерительного устройства, и совершенно не учитывается необходимость наличия дорогостоящего испытательного оборудования, к примеру, эталонного платинового термопреобразователя сопротивления ценой 30 000 рублей или $5000, без которого невозможна калибровка устройства.

Квалифицированно решить задачу создания измерительного устройства в области термометрии, в том числе и частную задачу по конструированию устройства обработки сигнала первичного преобразователя, можно только изучив основы термометрии, хорошо изложенные в [1, 2]. Здесь и далее понятия из области метрологии соответствуют [3]. Хорошим подспорьем будут материалы семинара Analog Devices [4], перевод которого можно найти на сайте www.autex.ru/lib.html.

Вся термометрия основана на изменении того или иного свойства вещества с изменением температуры. Многообразие этих свойств предполагает и многообразие способов измерения температуры. Свойство вещества изменять свой объем с изменением температуры и основанный на этом эффекте жидкостный термометр знакомы каждому со школьных лет. О ядерном квадрупольном резонансном термометре знает только узкий круг специалистов.

Для удобства воспроизведения температурной шкалы используется Международная практическая температурная шкала (МПТШ), основанная на нескольких постоянных и воспроизводимых температурах фазовых равновесий — реперных точках, которым присвоены определенные числовые значения, явившиеся результатом проведения множества измерений. Первая МПТШ была принята в 1928 году, затем неоднократно уточнялась. О сложностях, встретившихся при этом, в том числе и о сложности измерения температуры с высокой точностью, говорит, к примеру, тот факт, что разночтения между МПТШ-68 и МПТШ-48 в области высоких температур достигают нескольких градусов. В настоящее время действует МПТШ-90 (ITS-90), включающая в себя семнадцать реперных точек в диапазоне температур от –270,15 °С до +1084,62 °С.

Для применения в технике удобны способы измерения температуры, в которых температура преобразуется в электрический сигнал того или иного вида. Далее мы рассмотрим наиболее употребительные из этих способов и используемые при этом физические эффекты в применении к контактному измерению температуры, когда первичный преобразователь находится в непосредственном контакте с объектом измерения.

Зависимость электрического сопротивления проводников от температуры (терморезистивный эффект), открытая в 1827 году немецким физиком Омом, лежит в основе измерения температуры с использованием термопреобразователей сопротивления и терморезисторов.

В 1821 году немецкий физик Зеебек открыл явление термоэлектричества — возникновение термо-ЭДС в контакте разнородных материалов при наличии разности температур. С использованием этого эффекта работают термопары.

Зависимость контактной разности потенциалов в полупроводниковом p-n-переходе от температуры используется в полупроводниковых датчиках температуры. Строго говоря, к полупроводниковым датчикам следует отнести и большинство терморезисторов, и классификация получается достаточно условной.

На зависимости частоты механического резонанса кристалла от температуры основаны кварцевые термометры.

Выбор первичного преобразователя и конкретная конструктивная реализация устройства для измерения температуры определяются требуемыми метрологическими характеристиками и условиями эксплуатации, такими как:

  • диапазон измеряемых температур;
  • максимально допустимая погрешность измерения;
  • состав и свойства измеряемой среды;
  • долговременная стабильность;
  • тепловая инерционность;
  • срок службы;
  • межповерочный интервал;
  • механические воздействия, как на первичный преобразователь, так и на иные составные части устройства;
  • диапазон рабочих температур вторичных приборов;
  • расстояние между первичным преобразователем и вторичными приборами;
  • электромагнитная обстановка в предполагаемом месте применения.

Термопреобразователи сопротивления (термометры сопротивления, Resistive Temperature Devices RTDs).

Эти термины исторически закрепились за измерительными преобразователями на основе терморезистивного эффекта, изготовленными из чистых металлов, имеющих положительный температурный коэффициент сопротивления (ТКС). Металлы имеют достаточно простую зависимость удельного сопротивления от температуры, легко описываемую аналитически. Массовое распространение получили термопреобразователи сопротивления (ТС) на основе платины, меди и никеля, характеристики которых приведены в таблице 1. Зависимость сопротивления ТС от температуры описывается номинальными статическими характеристиками (НСХ), полученными статистической обработкой результатов многократных измерений, проведенных в разных странах. НСХ и аналитические зависимости сопротивления от температуры для платиновых, медных и никелевых ТС приведены в [5].

Таблица 1. Характеристики термопреобразователей сопротивления
Характеристики термопреобразователей сопротивления

Платиновые ТС имеют широкий диапазон рабочих температур и высокую стабильность характеристик, что позволяет использовать образцовые платиновые ТС в качестве эталонов при калибровке и проверке измерительных преобразователей всех других типов. Медные ТС имеют линейную зависимость сопротивления от температуры, однако, наряду с никелевыми, имеют существенно более узкий температурный диапазон и худшую стабильность из-за невысокой стойкости к окислению. Термопреобразователи, предназначенные для применения в сложных условиях эксплуатации, как правило, имеют защитную арматуру и относительно большие размеры и большей частью изготавливаются по традиционной технологии с проволочным чувствительным элементом.

Сведения о большинстве отечественных изготовителях первичных преобразователей и датчиков температуры на их основе можно найти на сайте www.eworld.ru/support/sgsns.htm.

Фирмами Heraeus Sensor Technology, Honeywell выпускается большая номенклатура платиновых тонкопленочных ТС, в том числе и миниатюрных, характеристики которых представлены в таблице 2.

Таблица 2. Платиновые термопреобразователи сопротивления
Платиновые термопреобразователи сопротивления

Из курса электротехники известны двухпроводная и четырехпроводная схемы измерения сопротивления. В практике использования термопреобразователей сопротивления наиболее распространена трехпроводная схема подключения. В случае удаленного размещения первичного преобразователя сопротивление подключающих проводов и его изменение с изменением температуры окружающей среды вносят неконтролируемую дополнительную погрешность.

Схема, теоретически позволяющая исключить влияние сопротивления подключающих проводов и его изменения с температурой, приведена на рис. 1. Ток через термопреобразователь сопротивления Rt обеспечивается источником тока на операционном усилителе DA1. Падение напряжения на проводе RL3 усиливается с коэффициентом усиления –2, а затем суммируется с падением напряжения на сумме сопротивлений RL1, Rt и RL3. При равенстве сопротивлений проводов RL1 = RL3 (что просто реализовать практически, отрезав два провода одинаковой длины из одной бухты) выходное напряжение сумматора равно падению напряжения на Rt . Сигнал с выхода сумматора усиливается усилителем с коэффициентом усиления — K. Через резистор R2 в схеме реализована линеаризация характеристики ТС. Такое решение с изменением питания первичного преобразователя часто используется при зависимости его функции преобразования, близкой к квадратичной. На рис. 2 показаны графики нелинейности характеристики платинового ТС в диапазоне температур от 0 до +600 °С без коррекции нелинейности и с коррекцией, построенные по значениям НСХ. Нелинейность передаточной характеристики схемы до коррекции 2,43%, после коррекции — 0,046%. Передаточная характеристика схемы по полезному сигналу описывается выражением:

а оптимальная коррекция нелинейности достигается при сопротивлении резистора R2, определяемом по формуле:

где Rt1, Rt2, Rt3 — сопротивление ТС при нижней, средней и верхней температурах рабочего диапазона температур соответственно.

Схема подключения ТС
Рис. 1. Схема подключения ТС, исключающая влияние сопротивления соединительных проводов
Нелинейность характеристики платинового ТС
Рис. 2. Нелинейность характеристики платинового ТС

Если в измерительной схеме используются АЦП и микроконтроллер, коррекция нелинейности реализуется программно, по НСХ преобразователя, записанной в память микроконтроллера в виде таблицы или коэффициентов соответствующего аппроксимирующего полинома. Такая схема, позволяющая, как и предыдущая, скорректировать влияние сопротивления подключающих проводов, показана на рис. 3. Последовательным измерением напряжения на входах AIN1 и AIN2 с последующим вычитанием из результата второго измерения удвоенного результата первого измерения получим значение напряжения непосредственно на ТС при условии, что сопротивления проводов RL1 и RL3 равны. В схеме реализован логометрический метод измерения напряжений, когда опорное напряжение, снимаемое с резистора R2, отслеживает изменение тока через ТС, при этом от источника питания не требуется особой стабильности.

Схема подключения ТС к АЦП
Рис. 3. Схема подключения ТС к АЦП

Специализированные микросхемы XTR108, XTR112, XTR114 (Texas Instruments) предназначены для применения в датчиках температуры с унифицированным выходным сигналом 4–20 мА. Микросхема XTR108 — интеллектуальный программируемый преобразователь для использования с температурными или мостовыми первичными преобразователями. Установки «нуля», «диапазона» и линеаризация аналогового тракта датчика обеспечиваются через последовательный цифровой интерфейс. XTR112 и XTR114 — аналоговые схемы, позволяющие корректировать нелинейность первичного преобразователя, и различающиеся значениями источников тока (2 по 250 мкА и 2 по 100 мкА соответственно), могут использоваться и с удаленным первичным преобразователем с трехпроводным подключением.

Для работы с ТС с номинальным сопротивлением до 1 кОм предназначена микросхема ADT70 (Analog Devices). Максимальный диапазон измеряемых температур –200…+1000 °С. Один из возможных вариантов схемы с использованием четырехпроводного подключения ТС показан на рис. 4. Учитывая, что ток питания преобразователя равен 0,9 мА, использование миниатюрных ТС с номинальным сопротивлением 1 кОм может вызвать их перегрев рабочим током.

Схема включения ТС с ADT70
Рис. 4. Схема включения ТС с ADT70

При необходимости особо точных измерений температуры следует учитывать саморазогрев ТС рабочим током. К примеру, для термопреобразователя TO-92 (Heraeus) с номинальным сопротивлением 100 Ом, находящегося в спокойном воздухе, при максимально допустимом токе 1 мА дополнительная погрешность составит 0,065 °С.

Нелишним будет еще раз напомнить, что все элементы схемы измерительного устройства, определяющие ее передаточную характеристику, должны быть прецизионными. Качественные характеристики компонентов определяются требуемыми метрологическими характеристиками устройства.

Терморезисторы на основе полупроводников имеют ТКС, на один-два порядка больший, чем у металлических термопреобразователей сопротивления.

Термисторы (Thermistors) — полупроводниковые резисторы с отрицательным ТКС, изготавливаемые на основе смеси окислов металлов переходной группы (от титана до меди). Выбором процентного соотношения компонентов и технологических режимов достигается получение необходимых значений удельного сопротивления и ТКС. Первая партия термисторов была выпущена фирмой General Motors в 1948 году.

Для термисторов характерны большая нелинейность характеристики, относительно большой разброс номинального сопротивления и ТКС, не слишком высокая стабильность. Несомненное достоинство термисторов — их невысокая стоимость, что наряду с надежностью до сих пор обеспечивает их применение в устройствах, не требующих высокой точности измерений. Большое значение номинального сопротивления при большой чувствительности позволяет не учитывать сопротивления подключающих проводов. Конструкции термисторов разнообразны, удовлетворяют различным условиям эксплуатации. Из-за их небольших размеров они имеют малую тепловую инерцию. Особенно хорош этот показатель у терморезисторов бусинковой конструкции, которые к тому же отличаются устойчивостью к воздействию неблагоприятных факторов измеряемой среды. Диапазон рабочих температур термисторов –100…300 °С, хотя отдельные высокотемпературные модификации работают вплоть до +1200 °С.

Аналитически зависимость сопротивления термистора от температуры описывается выражением:

где A и B — константы, определяемые свойствами полупроводникового материала.

Изготовители в справочных данных указывают номинальное сопротивление при определенной температуре (обычно +20 °С или +25 °С) и значение постоянной B.

Термисторы на основе медно-марганцевых (серии ММТ и СТ2), кобальто-марганцевых (КМТ и СТ1) и медно-кобальто-марганцевых (СТ3) окисных полупроводников выпускает ОАО «Алмаз». Тайваньская фирма Sensera производит 4 серии термисторов (HT, HAT, миниатюрные TS и для поверхностного монтажа CT) с рабочим диапазоном температур –50…+100 °С. Свыше тридцати типов термисторов в различных конструктивных исполнениях для целей измерения и регулирования температуры изготавливает Epcos. Две серии термисторов (NTSA0 и NTSD0) выпускает Murata.

Простыми схемами, приведенными на рис. 5, можно уменьшить нелинейность характеристики термистора до приемлемых значений. К примеру, погрешность нелинейности для термистора NTSA0XR502 (Murata) с номинальным сопротивлением 5 кОм с линеаризацией в диапазоне температур +30…+90 °С при сопротивлении резистора R, равном 965 Ом, не превышает ±1 °С, что показано на рис. 6. Такое решение вполне приемлемо, например, в схеме управления нагревом воды в баке стиральной машины.

Схемы линеаризации характеристик термисторов
Рис. 5. Схемы линеаризации характеристик термисторов
Погрешность нелинейности характеристики термистора после линеаризации
Рис. 6. Погрешность нелинейности характеристики термистора после линеаризации

Фирмой Maxim производятся специализированные микросхемы MAX6682 и MAX6691 для измерения температуры с применением термисторов с номинальным сопротивлением 10 кОм. Микросхема MAX6682 имеет встроенный 10-разрядный АЦП, предназначена для измерения температуры в диапазоне 0…+50 °С с погрешностью не хуже ±1,5 °С, которая определяется в основном погрешностью линеаризации характеристики термистора. Микросхема MAX6691 — четырехканальный преобразователь температуры с ШИМ. Линеаризация обеспечивается одновременно для всех четырех термисторов. Основное назначение микросхем — бытовая техника и медицинское оборудование.

Позисторы (Posistors) — это терморезисторы с большим положительным ТКС. Характеристика позистора имеет относительно линейный участок в диапазоне температур, не превышающем нескольких градусов. По этой причине позисторы непригодны для измерения температуры и используются в основном как пороговые элементы.

Кремниевые резистивные датчики температуры (Silicon Temperature Sensors) изготавливаются по технологии, аналогичной технологии интегральных схем, что обеспечивает им отличную долговременную стабильность. Физически используется метод измерения так называемого «сопротивления растекания», величина которого зависит только от удельного сопротивления материала и площади контакта. Кристалл не имеет p-n-переходов и очень прост конструктивно. Датчики имеют большой положительный ТКС, определяемый в основном значением удельного сопротивления используемого материала, и заметно меньшую в сравнении с термисторами нелинейность характеристики.

Датчики серий KT100, KT110, KT130, KT210, KT230, KTY10, KTY11, KTY13, KTY16, KTY19, KTY21, KTY23 (Infineon Texnologies) имеют рабочий диапазон температур –50…+150 °С, различное конструктивное исполнение (от корпуса SOT23 для поверхностного монтажа до специальных корпусов из никеля и нержавеющей стали). Среднее значение номинального сопротивления RA в зависимости от типа равно 1 кОм или 2 кОм, оно зависит от протекающего тока из-за эффекта саморазогрева. Рекомендуемое значение рабочего тока — 1 мА. В диапазоне температур –30…+130 °С зависимость сопротивления от температуры описывается выражением:

где α = 7,88×10–3 K–1; β = 1,937×10–5 K2.

Температурный коэффициент, характеризующий изменение сопротивления с температурой относительно номинального значения:

Кремниевые резистивные датчики температуры серий KTY81–KTY84 с номинальными значениями сопротивления 1 кОм и 2 кОм выпускаются фирмой Philips Semiconductors в корпусах SOD68, SOD70 и SOT23. Диапазон рабочих температур –55…+150 °С — для KTY81, KTY82, –55…+175 °С — для KTY83 и –40…+300 °С — для KTY84.

Нелинейность характеристики кремниевых резистивных датчиков корректируется теми же способами, что и для термисторов.

Преобразователи термоэлектрические (термопары, Thermocouples).

Для распространенных типов термопар путем многократных опытов с термопарами, изготовленными из высококачественных материалов, были определены номинальные статические характеристики преобразования (НСХ), в табличном виде представляющие зависимость термо-ЭДС термопары от температуры при температуре свободного конца, равной 0 °С. На основе этих табличных значений рассчитаны коэффициенты полиноминальной аппроксимации зависимости термо-ЭДС от температуры, при этом для разных участков рабочего диапазона температур эти коэффициенты зачастую различны, поскольку для некоторых типов термопар зависимость термо-ЭДС от температуры (первая производная от термо-ЭДС) имеет сложный характер, что видно из рис. 7. Классификация наиболее употребительных термопар приведена в [6], а номинальные статические характеристики и коэффициенты полиноминальной аппроксимации нормированы стандартом [7].

Зависимости чувствительности термопар от температуры
Рис. 7. Зависимости чувствительности термопар от температуры

Практически используемые в массовых измерениях термопары, естественно, имеют отклонения от НСХ, и разделяются по допустимому отклонению от НСХ на классы. На концах допустимого диапазона рабочих температур отклонение от НХС (основная абсолютная погрешность измерения) может достигать нескольких градусов. Характеристики термопар распространенных типов приведены в таблице 3.

Таблица 3. Характеристики распространенных термопар
Характеристики распространенных термопар
Примечание. В столбце «Диапазон рабочих температур» в скобках — предельно допустимое значение температуры, при котором термопара может использоваться кратковременно

Измерение термо-ЭДС термопары с минимальными инструментальными погрешностями обеспечивается в классическом компенсационном методе, когда две одинаковых термопары без компенсационных проводов включены встречно-последовательно, холодный спай имеет температуру тройной точки воды, а свободные концы подключены к потенциометру. Такой метод совершенно неприемлем для оперативного контроля и регулирования температуры.

Распространен метод измерения с компенсацией температуры свободных концов термопары с применением интегральных датчиков температуры с потенциальным выходным сигналом, таких как TMP35, LM35, LM45, LM135. С помощью внешнего делителя изменение выходного напряжения датчика с температурой окружающей среды приводится к усредненному значению чувствительности конкретного типа термопары в диапазоне рабочих температур измерительного устройства, обычно от 0 до +50 °С. Полученное напряжение суммируется с напряжением, вырабатываемым термопарой и дополнительным напряжением, что позволяет получить выходной сигнал схемы, эквивалентный НСХ соответствующей термопары. Одна из возможных схем компенсации температуры свободных концов показана на рис. 8. Регулировкой резистора R1 изменение с температурой напряжения на резисторе R3 подстраивается к значению чувствительности термопары, а регулировкой резистора R2 выходное напряжение устанавливается равным термо-ЭДС соответствующей термопары при фактической температуре окружающей среды.

Схема компенсации температуры свободных концов термопары на LM335
Рис. 8. Схема компенсации температуры свободных концов термопары на LM335

Специализированные микросхемы AD594, AD595, AD596, AD597 (Analog Devices), предназначенные для применения с термопарами, обеспечивают наряду с компенсацией температуры свободных концов термопары и требуемое усиление сигнала. Микросхемы AD594, AD596 предназначены для работы с термопарами типа J в диапазоне температур –200…+750 °С, а AD595, AD597 — типа K в диапазоне температур –200…+1250 °С. Диапазон компенсации температур свободного конца для AD594, AD595 составляет 0…+50 °С, а для AD596, AD597 +25…+100 °С. AD594 с незначительным увеличением погрешности может использоваться для усиления сигнала термопары типа T, и обе микросхемы с дополнительными внешними резисторами — термопары типа E для изменение выходного сигнала с температурой 10 мВ/°С. Типовое значение дополнительной температурной погрешности, вызванной одновременным действием изменения чувствительности термопары с температурой, дрейфом нуля усилителя и погрешностью усиления, не превышает ±(0,6

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *