Технология и применение HDR дисплеев

№ 7’2007
PDF версия
Человек видит гораздо больше, чем могут воспроизводить многие дисплейные устройства. В существующих в настоящее время системах регистрации, хранения, передачи и воспроизведения изображения используется компромиссные решения, обеспечивающие умеренное качество при малых расходах. Ограничения связаны с малой пропускной способностью каналов передачи, ограниченными объемами памяти на носителях, а также ограниченными возможностями традиционных дисплейных технологий. По мере развития технологий расширяются возможности для улучшения параметров различных компонентов. Развиваются интерфейсы и каналы связи для передачи качественного видеоконтента. С другой стороны, возросли требования к качеству цифрового изображения. В данной статье речь пойдет о новых перспективных дисплейных технологиях, обеспечивающих широкий динамический диапазон воспроизводимого изображения.

Характеристики зрительной системы человека

Динамический диапазон зрения человека лежит в пределах от 10–6 до 108 кд/м2, то есть составляет 100 000 000 000 000:1, или 14 порядков величины. Правда, глаз не может воспринимать свет из всего этого диапазона одновременно — максимальный диапазон интенсивности света, который соответствует динамическому диапазону зрительной системы человека, составляет что-то около 10 000:1 (около 5 порядков).

Соотношение диапазонов яркостей, воспринимаемых зрительной системой человека и воспроизводимых различными дисплейными технологиями
Рисунок. Соотношение диапазонов яркостей, воспринимаемых зрительной системой человека и воспроизводимых различными дисплейными технологиями

Аккомодационный механизм позволяет расширить диапазон яркости изображения, с которой способен работать глаз, до 10 порядков. В темном состоянии после адаптации в полной темноте долгое время глаз способен воспринимать энергию от нескольких фотонов, что соответствует освещенности одна миллионная доля люкса. Без адаптации различаются детали, имеющие освещенность до десятитысячных долей люкса.

Человеческий глаз — удивительное оптическое устройство, которое умеет работать практически при любом освещении. Способность глаза адаптироваться к контрастному свету поразительна: он может различать детали в диапазоне контрастности 800:1, то есть даже при самой сильной контрастности видит их как в ярких, так и в темных местах. Для сравнения: самая чувствительная пленка обеспечивает передачу контрастности в диапазоне чуть более 120:1. Для оценки уровней контраста, с которыми реально имеет дело зрительная система человека, в таблице приведены экспериментальные значения контраста для разных природных объектов. Данные используются при выборе экспозиции киносъемочной аппаратуры.

Можно заметить, что большая часть наблюдаемых в жизни объектов имеет умеренный контраст в диапазоне 1:5–1:100. Остальные случаи скорее экстремальные и приводят к «зашкаливанию» систем регистрации изображений — будь то глаз, пленочная фотокамера или цифровая фото- и видеоаппаратура.

Художник транспонирует яркостные ряды объекта, приспосабливая реальные соотношения к возможностям своей палитры. Это соотношение яркостей составляет примерно 1:40–1:60. Такое же соотношение между черными буквами и белой бумагой и между черным сукном и белым снегом в пасмурный зимний день. Эта особенность зрительного анализатора человека играет огромную роль в изобразительном искусстве.

Таблица. Интервал яркостей некоторых объектов съемки
Интервал яркостей некоторых объектов съемки

Существующая в настоящее время система кодирования и представления видеоинформации в цифровом виде формировалась 15–20 лет назад и опиралась на доступные технические средства и технологии. 8-разрядное кодирование обеспечивало вполне качественную и адекватную передачу видеоинформации. Однако проходят годы, развиваются новые технологии, растут потребности и новые сферы применения, в которых объективно требуется лучшее качество. Многие годы улучшение качества дисплейных систем шло в направлении увеличения разрешения и расширения цветовой палитры. Расширение динамического диапазона дисплейных систем было ограничено двумя основными факторами — использованием в цифровых дисплейных системах 8-разрядного кодирования и ограничением возможностей дисплейных технологий. В 1990-годы стали проводиться работы, связанные с формированием, обработкой, хранением и отображением HDRI (High Dynamic Range Image — изображение с широким динамическим диапазоном).

Работа с HDR-видеоконтентом является комплексной проблемой. Основные составляющие данного направления:

  • кодирование;
  • сжатие;
  • передача;
  • хранение;
  • воспроизведение.

Далее в статье мы будем рассматривать только один из аспектов проблемы HDR — воспроизведение.

Контраст и динамический диапазон дисплеев

Понятие «динамического диапазона» определяет максимальный диапазон изменения яркости между самым ярким и самым темным элементом изображения для того, чтобы вычислить число приращений уровней яркости. Контраст определяет относительную величину диапазона дисплея. Это отношение максимальной яркости воспроизводимого на экране элемента изображения к минимальной. Или же отношение уровней максимально белого к уровню черного. Обычные ЭЛТ имеют контраст 600:1, качественные современные TFT ЖК-дисплеи имеют контраст до 1000:1. Плазменные телевизоры могут иметь контраст до 4000:1. В рекламных материалах встречается и значение 10 000:1, но это динамический контраст. Венчурное предприятие Canon и Toshiba, названное SED Inc., разработало в 2005 году дисплейную панель на базе технологии SED (Surface-conduction Electron-emitter Display), в которой достигнут рекордный для такого типа дисплея контраст 100 000:1 (при яркости 300 кд/м2). Первые модели SED-панелей имели контраст 8600:1. Расширение динамического диапазона было получено за счет понижения уровня черного более чем в 13 раз. В настоящее время дисплейная технология SED еще не достигла уровня, достаточного для начала промышленного производства.

Если говорить о CRT, то основным ограничивающим его динамический диапазон фактором являются физико-химические свойства люминофоров. Эта пороговая величина носит название величины насыщения и определяет верхнюю границу динамического диапазона яркостей устройства отображения. Порог насыщения монитора гораздо меньше, чем предельная для человеческого глаза яркость. Глаз человека способен замечать гораздо более тонкие изменения яркости малой интенсивности, чем может отображать ЭЛТ-монитор.

На самом деле динамический диапазон монитора в реальных условиях даже несколько меньше, поскольку в реальных рабочих условиях всегда присутствует окружающий свет, который добавляется к свечению монитора. Это приводит к тому, что уровень «черного» на экране монитора определяется уровнем внешней освещенности.

Контраст и динамический диапазон ЖК-дисплеев

Ключевым параметром, определяющим уровень собственного контраста для ЖК-дисплеев, является коэффициент пропускания в темном состоянии. При использовании обычной нединамической задней подсветки даже при темном состоянии экрана происходит «просачивание» света через закрытые «темные» пиксели. Собственный контраст ЖК-дисплея можно повысить за счет уменьшения коэффициента пропускания в «черном» состоянии, который определяется коэффициентом эффективной поляризации двух поляризационных фильтров (пленок на верхней и нижней подложке), а также поляризационной характеристикой ЖК-ячейки.

Лучшие поляризационные пленки фирмы Nitto имеют коэффициент поляризации до 99,95%. ЖК-ячейка имеет значительно худшие поляризационные свойства. Дополнительный вклад в «осветление» уровня «черного» также дает и паразитное рассеяние света во внутреннем слое ЖК-панели.

До настоящего момента с целью понижения уровня «черного» применялось, например, уменьшение апертуры ЖК-ячейки. Уровень «черного» понижался, но одновременно понижалась и яркость экрана. Тем не менее, многие фирмы использовали этот прием. А для компенсации потерь в этом случае приходилось увеличивать яркость задней подсветки. В последнее время за счет применения новых технологий формирования ЖК-ячейки, например S-PVA (Samsung), удалось повысить величину собственного контраста до значения 2000:1.

Параметр задней подсветки играет очень важную роль для получения высокого качества изображения ЖК-дисплеев.

Динамический диапазон ЖК-дисплея с задней подсветкой определяется контрастом и уровнем максимальной яркости, который может обеспечить модуль задней подсветки.

Панель типового цветного TFT-дисплея пропускает максимум 7% от светового потока, излучаемого задней подсветкой. То есть для увеличения максимальной яркости требуется увеличивать яркость подсветки или увеличивать коэффициент пропускания ЖК-панели. Ресурсов для увеличения пропускания для цветной TFT-панели, использующей стандартную технологию с цветными фильтрами, практически нет. Но если отказаться от использования цветных фильтров внутри панели и применить последовательную цветовую модуляцию по времени, то можно значительно увеличить коэффициент пропускания. Цветные фильтры задерживают до 75% световой энергии. При этом можно автоматически увеличить разрешение в три раза, поскольку каждый из бывших RGB-пикселей теперь будет участвовать в модуляции всех RGB-компонентов. Для осуществления данной схемы модуляции требуется использование динамической светодиодной подсветки и ЖК-панели с быстродействием не хуже 4–5 мс. И такие панели в настоящее время уже производятся.

Методы расширения динамического диапазона ЖК-дисплеев

Один из способов расширения динамического диапазона основывается на использовании последовательной двухмодуляторной световой схемы. Световой поток последовательно модулируется одним, затем другим модулятором. При этом динамический диапазон системы расширяется. В качестве первого модулятора может быть использован, например, DMD-проектор, а в качестве второго — стандартная TFT-панель. При этом контраст интегральной дисплейной системы будет определяться произведением контрастов обоих модуляторов. Особенности такой схемы будут рассмотрены ниже.

Digital Micromirror Device (DMD) аббревиатура правильная, DLP — это бренд Texas Instruments.

Динамическая задняя подсветка ЖК-дисплеев

Частным случаем двойной модуляции можно считать применение в ЖК-телевизорах многих производителей адаптивной динамической подсветки. Этот прием используется для расширения динамического диапазона дисплейной системы без изменения собственного контраста ЖК-панели. Впервые динамическая подсветка с целью расширения динамического диапазона по яркости начала использоваться лет 7 назад для ЖК-дисплеев с подсветкой CCFL. Это решение до сих пор используется в моделях ЖК-телевизоров многих производителей. В зависимости от среднего уровня яркости экрана увеличивается или уменьшается яркость модуля подсветки. Автоматическая регулировка яркости может осуществляться как для люминесцентных ламп с холодным катодом, так и для светодиодных панелей. Таким образом, для сцен с низкой средней яркостью (ночные съемки) яркость подсветки уменьшается. Соответственно, уменьшается и уровень «черного».

В связи с появлением динамической подсветки для оценки динамического диапазона таких дисплеев был введены новые параметры — статический и динамический контраст.

Статический контраст оценивается отношением максимальной и минимальной яркости полей изображения, измеренных в одно и то же время в поле кадра одного изображения, а динамический — в разные моменты времени и относящиеся к разным изображениям. Динамический контраст всегда выше или равен статическому.

Применение светодиодной подсветки в ЖК-мониторах и телевизорах позволяет не только расширить цветовую палитру, но и обеспечить дополнительные возможности как для расширения динамического диапазона, так и для уменьшения артефактов, связанных с отображением движущегося изображения. Кроме того, активная динамическая светодиодная подсветка позволяет добиться уменьшения потребляемой мощности дисплея. Динамическая подсветка теоретически позволяет достигать нулевого уровня яркости для уровня «черного». Таким образом, при расчете по принятой ранее формуле контраста ЖК-дисплеев получим бесконечное значение. В связи с этим пришлось пересмотреть подход в расчетах контраста. В качестве минимального уровня яркости для таких дисплеев принимается минимальное приращение уровня яркости, соответствующее младшему разряду динамического диапазона системы «светодиодный модулятор + ЖК-панель».

Дисплейная технология BrightSide

BrightSide Technologies — частная канадская компания, которая разработала комплекс передовых технологий в области HDR-изображений с большим динамическим диапазоном. BrightSide разработала компоненты для всей цепочки технологии HDR: фиксация изображения, кодирование, сжатие, хранение и отображение. Наряду с разработкой дисплейной технологии BrightSide разработала и технологию фиксации HDR-изображений для цифровых фотокамер, позволяющую получить высокий динамический диапазон при низких накладных расходах. Фирмой были разработаны также высокоэффективные методы сжатия и кодирования как статических, так и динамических изображений в форматах JPEG-HDR и MPEG-HDR, обеспечивающих значительное сокращение требуемых объемов памяти с сохранением высокого динамического диапазона и разрешения.

Дисплей BrightSide имеет динамический диапазон 200 000:1 и яркость в 10 больше, чем у любого из имеющихся коммерческих дисплеев. В то же время уровень «черного» в данном дисплее также меньше в 10 раз, чем у любого обычного дисплея. Дисплеи BrightSide (рис. 1) используют технологию индивидуальной светодиодной модуляции задней подсветки, обеспечивающую яркость и контраст гораздо выше уровня, достижимого в настоящее время для CRT, плазменных, DLP- или ЖК-дисплеев.

Структура двухмодуляторного дисплея
Рис. 1. Структура двухмодуляторного дисплея (ЖК-панель + массив светодиодов)

Изображение, наблюдаемое на экране дисплеев BrightSide, непривычно живое и энергичное.

Плоскопанельные ЖК-панели компьютерных дисплеев модулируют свет, который падает из источника подсветки, обеспечивающего однородную и постоянную яркость. Источник подсветки обычно состоит из одной или нескольких люминесцентных ламп, установленных сзади ЖК-панели. В HDR-дисплее BrightSide этот источник подсветки заменен на управляемый массив ультраярких светодиодов белого свечения или же трехцветных ярких светодиодов.

Светодиоды расположены в массиве, где яркость каждого светодиода может управляться независимо и с большей частотой, чем частота развертки дисплея. По сути, этот массив светодиодов является эффективным дисплеем низкого разрешения, но с очень высокой яркостью. Управляемые источниками тока светодиоды способны обеспечивать яркость свыше 75 000 кд/м2 при максимальном токе и совсем не испускают света в выключенном состоянии при нулевом токе. Это черно-белое изображение низкого разрешения, синтезируемое матрицей светодиодов, затем проецируется через стандартную цветную ЖК-панель, которая отображает то же изображение, но более высокого разрешения. Таким образом, светодиодная матрица обеспечивает локальную низкочастотную модуляцию светового потока, а матричная панель производит высокочастотный пространственный «тюнинг» с коррекцией искажений от светодиодного модулятора.

Каждый индивидуально управляемый светодиод подсвечивает маленькую площадь ЖК-панели. Получаем эффект умножения двух последовательных модуляторов света, каждый из которых дает свой вклад в динамический диапазон. Благодаря алгоритмам программной коррекции и эффекту натурального рассеяния света в человеческом глазу, эффект пятен яркости от изображения, синтезированного матрицей светодиодной подсветки низкого разрешения, становится незначительным. В результате получаем изображение высокого разрешения с высоким динамическим диапазоном.

Стоит заметить, что 100-кратное расширение динамического диапазона в HDR-дисплее получено за счет оптических свойств обычных компонентов (рис. 2). При этом сложность обработки видеосигнала в дисплее сравнима с уровнем обработки видеосигналов в обычных видеокартах.

Принцип формирования изображения двухмодуляторной схемой HDR-дисплея
Рис. 2. Принцип формирования изображения двухмодуляторной схемой HDR-дисплея: а) исходное изображение; б) изображение на массиве светодиодов; в) скорректированное изображение на ЖК-панели; г) HDR-изображение

В 37-дюймовом экране дисплея BrightSide 2 млн пикселей ЖК-панели подсвечиваются 1380 светодиодами белого спектра. Каждый светодиод из матрицы подсвечивает свой массив пикселей ЖК-модулятора.

В процессе обработки видеосигнала производится расчет средних значений уровня яркости для каждого такого массива.

В итоге получается матрица средних значений яркости для m-x-n-зон. По сути, это матричное черно-белое изображение, соответствующее низкочастотной пространственной компоненте исходного изображения. Поскольку соседние светодиоды в матрице оптически не изолированы, то происходит неизбежная подсветка соседних зон. Можно было бы попытаться сделать оптическую изоляцию, но, во-первых, это не просто и довольно дорого, а во-вторых, полной ликвидации паразитной подсветки избежать все равно не удастся. Поэтому был выбран другой метод — путем математического расчета доля паразитной подсветки учитывалась и далее участвовала при вычислениях матрицы сигналов управления пикселями ЖК-панели.

Сигналы управления светодиодной матрицей еще нужно рассчитать, пользуясь с одной стороны вычисленными ранее значениями матрицы средней яркости, а с другой — передаточной спектральной характеристикой белого светодиода. Яркость светодиода определяется значением протекающего тока. Следует дополнительно учесть, что спектральная характеристика белого светодиода нелинейно зависит от уровня тока. То есть нужно использовать калибровочные поправочные коэффициенты при расчетах. Предполагается, что все светодиоды имеют идентичные характеристики. Но если это не совсем так, то требуется проводить индивидуальную калибровку всех светодиодов матрицы и хранить в памяти коэффициенты для каждого из светодиодов. В настоящий момент светодиоды, скорее всего, просто подбирают по идентичности параметров. Поскольку для управления светодиодами используется ШИМ, то нужно получить соответствующие коды управления в 8-, 10- или 16-разрядном формате.

Данные управления яркостью светодиодной матрицей образуют загрузочный файл, готовый для загрузки в микросхемы светодиодных драйверов.

Для точной «подстройки» количества света для каждого пикселя, входящего в сегмент каждого светодиода, вычисляются сигналы управления. При расчетах учитывается влияние световых потоков от соседних светодиодов. Алгоритмы, разработанные BrightSide, позволяют выполнять данную обработку в реальном масштабе времени для каждого пикселя при кадровой развертке до 60 Гц.

Таким образом, за счет использования двухмодуляторной схемы получаем шкалу управления яркостью с разрядностью 16–18 (светодиодный ШИМ 8 разрядов, плюс 8–10 разрядов для управления ЖК-панелью).

Энергетические характеристики модуля подсвета

Модуль подсветки монитора BrightSide содержит 1380 одноваттных светодиодов белого свечения Luxeon. Управление каждым светодиодом производится через драйверы мощных светодиодов. Одна микросхема драйвера управляет 16 светодиодами. Максимальный ток каждого светодиода — 60 мА. Перемножив на 1380, получим суммарный ток потребления только массивом светодиодов 82,8 А (!). Прямое падение напряжения на белом светодиоде при токе 60 мА — 3,5 В. Итого суммарная выделяемая мощность на светодиодном массиве составляет около 290 Вт. К этой мощности следует добавить мощность, рассеиваемую на микросхемах драйверов, которых на плате модуля подсветки 87 штук (1380/16) и которые работают на частоте 10 МГц (загрузка + синтез ШИМ-сигналов). Загрузка драйверов осуществляется по последовательно-параллельной схеме с использованием эстафетного механизма. На драйверах рассеивается еще 40–50 Вт. Блок видеопроцессора потребляет еще 10–15 Вт. С учетом КПД источников питания (токи весьма внушительные — около 100 А) получим 500–600 Вт. Очевидно, что такой модуль подсветки требует принудительного воздушного охлаждения с помощью нескольких вентиляторов. Максимальная яркость светодиодного массива сравнима с яркостью автомобильной фары (световой поток 1300 люмен), бьющей прямо в глаза с расстояния полуметра.

История разработки HDR-дисплеев

Первые разработки HDR-дисплеев начали проводиться еще в 1993 году. Тогда еще не было мощных светодиодов, тем более, белого свечения, поэтому для реализации двухмодуляторной схемы были выбраны DLP-проектор и стандартная 15

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *